News
Bernie Goldie
29/01/2008

Discovery promises major advances in energy conversion and storage

University of Wollongong scientists have made an exciting discovery that enables processing and fabrication of an abundant form of carbon with extraordinary properties.

Results of the discovery were released in the prestigious international journal, Nature (Nanotechnology), yesterday Monday January 28 (AEST).

Director of the ARC Centre of Excellence for Electromaterials Science (ACES), Professor Gordon Wallace, said results already indicated that the discovery would lead to advances in energy conversion (new transparent electrodes for solar cells) , energy storage (new electrodes for batteries -- especially flexible batteries) and as new electrodes in medical bionics.

The discovery was led by QE2 Fellow in ACES/Intelligent Polymer Research Institute, Dr Dan Li. Other collaborators included recent Fulbright Fellow at the University of Wollongong, Professor Ric Kanar, who hails from UCLA in the United States, and University of Wollongong PhD student, Benjamin Mueller.

The Nature (Nanotechnology) paper is titled, ‘Processable aqueous dispersions of graphene nanosheets’. Graphene — a carbon-based nanomaterial known for its unique electronic, thermal and mechanical properties — can form stable dispersions in water without the need for additional chemical stabilisers. The researchers’ findings will have practical implications for the development of coatings to reduce static build-up on materials.

Graphene is the name given to the individual sheets of carbon, just one atom thick, that stack together to form graphite. Keeping graphene sheets separate from one another is a difficult task because they tend to stick together, forming larger structures that are not particularly useful. However, now the UOW team, using a sequence of chemical reactions, has shown how aqueous dispersions of well-separated graphene sheets can be made from graphite — an abundant and inexpensive starting material.

Rather than relying on either polymer or surfactant stabilisers, their approach maximises the electrostatic charge on the graphene sheets, ensuring that they repel one another instead of clumping together.

Professor Wallace said that this low-cost approach offers the potential for large-scale production of stable graphene colloids that can be processed using well-established solution-based techniques — such as filtration or spraying — to make conductive films.

“In addition to antistatic coatings, these materials are expected to have applications in flexible transparent electronics, high-performance composites and nanomedicine,” he said.

UOW IN THE NEWS 

New study finds medicating ...
ABC AM | 22 June
Anti-psychotic medication fo...
ABC News | 22 June
Increased funding 'decrease...
ABC News | 22 June
More steps to secure s...
Jakarta Post | 21 June
NSW budget delivers a fat ...
The Conversation | 21 June
More money for schools wor...

AFR | 20 June
Labrador offers four-legged...

ABC | 16 June
Magnets could pull oil out of ...
New Scientist | 16 June
How your father is controlling ...
The Age | 16 June
HSC High Achiever: VET Au...
Brisbane Times | 16 June
On the path to Australia's sm...
Business Review Australia | 15 June
New hobbit findings help Un...

The Australian | 15 June
State of the states: New Sou...
The Conversation | 14 June
Hobbit forming

The Economist | 11 June
‘Hobbits’ pushed back to 700,...
Japan Times | 10 June
Pig and kangaroo form ‘intens...
MSN | 10 June
Australian-led team unlocked...
Daily Telegraph | 10 June
Today’s science mystery: rapi...
The Verge | 9 June
Scientists Discover Remains...
Jakarta Globe | 9 June
Miniature 'Hobbit' Humans Ha...
Yahoo News UK | 9 June
Fossils Hint at Long-Sought ...
Scientific American | 9 June
Discovery provides new cl...
Herald Sun | 9 June
More media coverage