Campus News

Small muscles to have big impact on smart clothing

Australian scientists are among a team to develop a new artificial muscle with exciting possibilities for use in self-powered intelligent textiles that could automatically react to environmental conditions like heat or sweat.

Researchers at the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong are part of a team spread across four continents, to develop the new hybrid yarn muscle.

The hybrid yarn muscles are based on carbon nanotubes which are hollow cylinders just one carbon atom thick like the layers of graphite. On their own, carbon nanotubes are about 10,000 times smaller than the diameter of a human hair but they can be 100 times stronger than steel.

Researchers combine the nanotubes with a wax material like household candles, the result being a single thread of yarn around 10 times smaller than the diameter of a human hair, that can lift over 100,000 times its own weight and generate 85 times higher mechanical output that natural skeletal muscles.

“When heated, either electrically or with a flash of light, the wax in the yarn muscles expands, causing contraction of the nanotube yarn and generating a very large contraction,” according to ACES researcher Professor Geoff Spinks.

Unlike other artificial muscles, the hybrid yarn muscles are fully dry so actuation can be triggered from changes in environmental temperature or the presence of chemical agents, making them perfect for use as self-powered intelligent materials.

Using the advanced customised technology of the Australian National Fabrication Facility that is housed at ACES’ Wollongong NSW node, scientists can move to the next exciting step of weaving, sewing, braiding and knitting the hybrid yarn muscles.

“The yarns could be used to create intelligent fabrics that can open and close the porosity of the fabric to allow heat in or keep it out, or release moisture,” ACES researcher and fabrication expert Dr Javad Foroughi said, who has also just been awarded a three-year fellowship from the Australian Research Council to develop intelligent fabrics.

Other applications for the yarns could include robots, catheters, micro-motors, tuneable optical systems and even toys.

The research is published today (Friday 16 November) in Science.

Last reviewed: 16 November, 2012

Contact us

+61 2 4221 4227 | media@uow.edu.au 

Share

UOW IN THE NEWS

A heritage vision for sustainable hous...
The Conversation | 2 September
Drone technology to the rescue

Seven News | 1 September 
Indonesia's mystery 'hobbit' unveiled...
Nine News | 1 September
Photographer Tom Williams to open...
Sydney Morning Herald | 30 August
The way we work is insane
Sydney Morning Herald | 29 August
Discovering the Hobbit of Flores...
Australian Geographic | 28 August
$10m seed fund for start-ups in ...

BRW | 27 August
Australia’s transport is falling beh...
The Conversation | 27 August
What is the meaning and what is...
The Conversation | 26 August
From camp to gay to queer: David ...
The Conversation | 26 August
‘Sense of belonging’ enhances the ...
The Conversation | 26 August
25 ideas to change the world, part...
Courier Mail | 26 August
UOW research centre inspiring ins...
ABC Illawarra | 25 August
Opinion: How unions drive up power...

Courier Mail | 23 August 
Six women whose research will ch...
The Age | 23 August
Civic assault prompts push for one...
C
anberra Times | 22 August
Universities join forces with $3.8m...
Herald Sun | 22 August
International scientists discuss...
US Army | 21 August
More media coverage