News
Bernie Goldie
16/11/2012

Small muscles to have big impact on smart clothing

Australian scientists are among a team to develop a new artificial muscle with exciting possibilities for use in self-powered intelligent textiles that could automatically react to environmental conditions like heat or sweat.

Researchers at the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong are part of a team spread across four continents, to develop the new hybrid yarn muscle.

The hybrid yarn muscles are based on carbon nanotubes which are hollow cylinders just one carbon atom thick like the layers of graphite. On their own, carbon nanotubes are about 10,000 times smaller than the diameter of a human hair but they can be 100 times stronger than steel.

Researchers combine the nanotubes with a wax material like household candles, the result being a single thread of yarn around 10 times smaller than the diameter of a human hair, that can lift over 100,000 times its own weight and generate 85 times higher mechanical output that natural skeletal muscles.

“When heated, either electrically or with a flash of light, the wax in the yarn muscles expands, causing contraction of the nanotube yarn and generating a very large contraction,” according to ACES researcher Professor Geoff Spinks.

Unlike other artificial muscles, the hybrid yarn muscles are fully dry so actuation can be triggered from changes in environmental temperature or the presence of chemical agents, making them perfect for use as self-powered intelligent materials.

Using the advanced customised technology of the Australian National Fabrication Facility that is housed at ACES’ Wollongong NSW node, scientists can move to the next exciting step of weaving, sewing, braiding and knitting the hybrid yarn muscles.

“The yarns could be used to create intelligent fabrics that can open and close the porosity of the fabric to allow heat in or keep it out, or release moisture,” ACES researcher and fabrication expert Dr Javad Foroughi said, who has also just been awarded a three-year fellowship from the Australian Research Council to develop intelligent fabrics.

Other applications for the yarns could include robots, catheters, micro-motors, tuneable optical systems and even toys.

The research is published today (Friday 16 November) in Science.

UOW IN THE NEWS

Australia’s Constitution works ...
The Conversation | 7 July
3D-Printed Flutes Can Pro...
Gizmodo Australia | 7 July
Indigenous students aiming f...
ABC South East NSW | 6 July
The NZ standards for junk fo...
B&T | 3 July
Western Sydney buildings w...

Domain | 3 July
The 7 Ways 3-D Printing Is G...

Mic | 2 July
Wollongong Uni team’s new ...
The Australian | 2 July
A better anticorruption agenc...
Jakarta Post | 1 July
To listen, not just to hear
ABC Radio National | 1 July
What stone tools found in so...
The Conversation | 1 July

How might gay marriage liber...
ABC Radio National | 30 June
Contain yourself
The West Australian | 30 June
New resource for dementia-frien...
Australian Ageing Agenda | 30 June
Canberra workers split the he...
Sydney Morning Herald | 28 June
Why should we care about inequality?
Sydney Morning Herald | 28 June
Lifting governance will earn billions
AFR | 28 June
A horrible choice
The Economist | 27 June
US Hostage Policy Shift to Em...
Sputnik News | 26 June
Repower Shoalhaven renew...
Sydney Morning Herald | 25 June
Couples Are Getting Paid To ...
Huffington Post | 24 June
South Africa is failing to addre...
The Conversation | 24 June
If you don’t like looking at wind ...
The Conversation | 23 June
Opinion: The thought that work...
Courier Mail | 21 June
Does Australia's Steel Industry...
AFR | 19 June
Scientist Nathanial Harris raps ...
Sydney Morning Herald | 19 June
Infrastructure investment must ...
AFR | 18 June
More media coverage

  • Dr Javad Foroughi (left) and Professor Geoff Spinks are part of a team which has helped develop a new hybrid yarn muscle.