News
03/05/2013

Custom-made ‘printed’ human organs just a decade away

University of Wollongong (UOW) scientists are at the forefront of a medical revolution using 3D ‘printing’ to reproduce human body parts.

Researchers from UOW’s ARC Centre of Excellence for Electromaterials Science (ACES) and St Vincent’s Hospital, Melbourne, announced in Melbourne today (Friday 3 May) that they are just three years away from printing custom-made body parts, including muscle and nerve cells and cartilage. And in just over a decade, they believe will be possible to print human organs.

“It is already possible to print 3D biocompatible plastics and metals to manufacture patient-specific implants,” ACES Director Professor Gordon Wallace said.

“Within a few years, we believe it will be possible to manufacture living tissues like skin, cartilage, arteries and heart valves using cells and biomaterials. Using a patient’s own cells to create this tissue avoids issues of immune rejection. By 2025, it is feasible that we will be able to fabricate complete functional organs, tailored for an individual patient.”

Professor Wallace and his team are are meeting with clinicians, medical device manufacturers and policy makers this week in Melbourne to discuss the future of fabricated medical implants.

Professor Wallace said 3D printing, or additive fabrication, uses machines to build 3D objects layer-by-layer from digital data.

“While 3D printing is already being used in some medical applications, by bringing together the materials and scientists at ACES and the clinicians and researchers at SVH we have been able to accelerate our progress so that we are now on the verge of a new wave of technology leveraging 3D printing/additive fabrication techniques to deliver solutions to a number of medical challenges. These include bionic devices, the regeneration of nerve, muscle and bone, as well as epilepsy detection and control.”

Professor Wallace said the research would receive a huge boost next month with the launch of an additive biofabrication unit at St Vincent’s hospital in Melbourne, expanding the program from its base at the University of Wollongong’s Intelligent Polymer Research Institute (IPRI), the lead node of ACES. The St Vincent’s facility will be the first of its kind in Australia to be located in a hospital.

“This is an exciting development involving the establishment of a customised facility at St Vincent’s, Melbourne. [It] will put our scientists and engineers in direct contact with clinicians on a daily basis [and] is expected to fast track the realisation of practical medical devices and the reproduction of organs,” Professor Wallace said.

UOW IN THE NEWS 

New study finds medicating ...
ABC AM | 22 June
Anti-psychotic medication fo...
ABC News | 22 June
Increased funding 'decrease...
ABC News | 22 June
More steps to secure s...
Jakarta Post | 21 June
NSW budget delivers a fat ...
The Conversation | 21 June
More money for schools wor...

AFR | 20 June
Labrador offers four-legged...

ABC | 16 June
Magnets could pull oil out of ...
New Scientist | 16 June
How your father is controlling ...
The Age | 16 June
HSC High Achiever: VET Au...
Brisbane Times | 16 June
On the path to Australia's sm...
Business Review Australia | 15 June
New hobbit findings help Un...

The Australian | 15 June
State of the states: New Sou...
The Conversation | 14 June
Hobbit forming

The Economist | 11 June
‘Hobbits’ pushed back to 700,...
Japan Times | 10 June
Pig and kangaroo form ‘intens...
MSN | 10 June
Australian-led team unlocked...
Daily Telegraph | 10 June
Today’s science mystery: rapi...
The Verge | 9 June
Scientists Discover Remains...
Jakarta Globe | 9 June
Miniature 'Hobbit' Humans Ha...
Yahoo News UK | 9 June
Fossils Hint at Long-Sought ...
Scientific American | 9 June
Discovery provides new cl...
Herald Sun | 9 June
More media coverage

  • 3D printing will save lives and revolutionise surgery, scientists say. Photo: RDECOM | Flickr.

  • Director of UOW’s ACES, Professor Gordon Wallace, says custom-made body parts, including muscle and nerve cells and cartilage, could be ‘printed’ using a patient’s own skin cells in as little as three years.